新闻与活动 活动信息

Westlake Math Colloquium第五十八期 | Guoyi Zhang: Small Area Estimation using Support Vector Machine

时间

2024年7月11日(周四)
16:00-17:00

地点

西湖大学云谷校区E4-233

主持

理论科学研究院 周珍楠

受众

全体师生

分类

学术与研究

Westlake Math Colloquium第五十八期 | Guoyi Zhang: Small Area Estimation using Support Vector Machine

时间:2024年7月11日(周四)16:00-17:00

Time: 16:00-17:00, Thursday, July 11 2024

地点:西湖大学云谷校区E4-233

Venue: E4-233, Yungu Campus


主持人:理论科学研究院 周珍楠

Host: Zhennan Zhou, ITS

主讲人:新墨西哥大学 张国鹢

Speaker: Guoyi Zhang, University of New Mexico

讲座主题:Small Area Estimation using Support Vector Machine

讲座摘要: The Fay-Herriot model (Fay&Herriot,1979) and the Battese, Harter, and Fuller (BHF) model (Battese, Carter, &Fuller,1988) are commonly used in small area estimation (SAE), assuming a linear relationship between response and predictor variables, which may not always hold. This study extends both models to more flexible semi-parametric versions (SP-SAEArea and SP-SAEUnit) where nonparametric components are estimated using machine learning tools like support vector machines. We propose two backfitting algorithms to address the SP-SAEArea and SP-SAEUnit problems. Using American Community Survey (ACS) data and simulations, our SP-SAEArea and SP-SAEUnit models significantly enhance estimation accuracy by simultaneously reducing bias and variance when linear relationships are not met. This research underscores the importance of integrating machine learning techniques into small area estimation to improve accuracy by addressing model assumptions.