新闻与活动 活动信息

理学院专题学术讲座 | Yangmu Li:Electron Correlations in Topological Quantum Crystals for Future Applications

时间

2021年1月15日(周五)
上午10:00-11:00

地点

西湖大学云栖校区4号楼211会议室,ZOOM直播

主持

西湖大学理学院 何睿华 博士

受众

全体师生

分类

学术与研究

理学院专题学术讲座 | Yangmu Li:Electron Correlations in Topological Quantum Crystals for Future Applications

时间2021年1月15日(周五)上午10:00-11:00

Time10:00-11:00 AM, Fri., Jan. 15th, 2021

主持人: 西湖大学理学院 何睿华 博士

Host: Dr. Ruihua He, PI of School of Science, Westlake University

地点:西湖大学云栖校区4号楼211会议室,ZOOM直播

Venue: Room 211, Building 4, Yunqi Campus, ZOOM webinar

线上:ZOOM直播(会议号:823 0282 8618)

Online: ZOOM webinar (Meeting ID: 823 0282 8618)

主讲嘉宾/Speaker:

Dr. Yangmu Li

Condensed Matter Physics and Material Science Division,

Brookhaven National Laboratory


主讲人简介/Biography:

Dr. Yangmu Li obtained his Ph.D. at the University of Minnesota in 2017 and is currently a Research Associate in Condensed Matter Physics and Material Science Division, Brookhaven National Laboratory. He is an independently funded Principal Investigator at the DOE Center for Functional Nanomaterials and at Oak Ridge National Laboratory. Dr. Li is interested in correlated and topological single-crystalline materials. His experimental techniques including single crystal synthesis, neutron/X-ray spectroscopy, muon spin rotation, high-magnetic-field charge transport, electron microscopy, and Focused Ion Beam.

讲座摘要/Abstract:

Investigating interaction, superposition, and entanglement of quantum states in strongly correlated and topological materials that carry the charge, spin, lattice and orbital degrees of freedom provide a wealth of knowledge for quantum energy and information sciences. In this talk, I’ll present my recent work on functional quantum crystals that benefited from developments of both spectroscopy techniques and theoretical understandings. In specific, I’ll focus on (1) quantum-electronic-coherence bounded topological state in iron chalcogenides, which lead to potential topological superconductivity and Majorana zero modes for error-free quantum computing; (2) correlation-driven micro-magnetism in Kagome magnets that tunes topological bandgap and allows a detection via electrical responses near room temperature. These examples point to a novel platform for manipulating emergent phenomena in strongly correlated and topological materials relevant to future applications.


References

1. Li et al., Nat. Mater. (arXiv:2012.07893);

2. Phys. Rev. Lett. 123, 196604 (2019);

3. Appl. Phys. Lett. 115, 173507 (2019);

4. Sci. Adv. 5, eaap7349 (2019);

5. Sci. Adv. 5, aav7686 (2019).

讲座联系人/Contact: 

理学院 雷老师 leirong@westlake.edu.cn