尚睿博士

Rui Shang, Ph. D.

可持续催化与功能分子实验室

联系

邮箱: rshang@westlake.edu.cn

网站:

尚睿博士

Rui Shang, Ph. D.

可持续催化与功能分子实验室

联系

邮箱: rshang@westlake.edu.cn

网站:

在西湖,我们的愿景与梦想引领我们走向未知,努力探索科学里的“世界尽头与大外海”。

一、个人简介

课题组负责尚睿于2009得中国科学技大学学士学位,并于2014年在同校得博士学位。2012年至2014,他作为联合培养博士生在日本京大学行学与研究。博士毕业后,他得日本学会(JSPS)博士后学金,并在京大学继续深造。201611月跳过助理教授晋升東京大学理学部讲师,并于2020年在東京大学理学部晋升副教授。2024年在東京大学理学部晋升特任教授。将202510月全加入西湖大学,立可持催化与功能分子实验室。

尚睿教授的研究方向新型催化反绿色有机合成,新型共分子及其材料功能。在廉价金属催化,可光催化,以及有机功能材料域做出了一系列有国影响力的原性成果。SCI80余篇,被引用9500余次。尚睿教授曾中国青少年科技(2011),中国科学院院(2013),中国科学院百篇秀博士(2015)得斯普林格博士 (2016)。他于 2022 年被选为Science of Synthesis (SoS) Early Career Advisory Board member,并于 2022 年被选为瑞士化学会Bürgenstock Conference JSP Fellow。他最近得了Banyu Merck-JapanBanyu Chemist Award 2022,日本化学会(2022),和Thieme Chemistry Journals Award 2023。目前尚睿教授担任Organic Chemistry Frontier 的首届Early Career Advisory Board member,中国科学化学(Science China Chemistry)的青年委,以及Luminescence (Wiley)的副主。尚睿教授于2025年荣美国化学会ACS Catalysis Lectureship Award 2025,是该奖项2012颁奖以来的首位获奖者。

二、学术成果

尚睿教授的研究趣涵盖较为广泛的催化反应领域,近年来在廉价金属催化和可光催化方面开展了一系列具有国影响力的原研究,并成功开了多种具有独特构的共功能材料。其代表性成果开拓了催化的金属有机反活性,并设计用于功能子材料合成的催化反Nat. Catal., 2019, 400; Nat. Catal., 2021, 631; Nat. Synth., 2024, 1349; JACS, 2022, 21692),通性的反合成了新型的聚合物和小分子有机半体材料,成功用于光电检测、光伏、和光等子器件 (JACS, 2021, 6823; ACIE, 2022, e2022039490。在可光催化域,国首次提出并开辟了基于激发电-受体合物的光氧化原催化的新概念(Science, 2019, 1429; Sci. China Chem., 2021, 439),并在可光激渡金属催化域做出了早期的工作 (ACS Catal., 2020, 9170),提出了激发态钯催化的概念 (JACS, 2017, 18307; Nat. Commun., 2018, 5215)。近期他设计展了一系列廉价易得的阴离子型光催化Chem, 2025, 102359 Nat. Commun., 2022, 354ACS Catal., 2022, 4103),并用于功能子材料的光催化合成(ACS Catal., 2023, 11753)。他与日本三菱化学、高化学等企以及一些国内企建立长期的学研合作关系,开了多种具有独特构的共功能材料(JACS, 2018, 5018; JACS, 2020, 2059; JACS, 2020, 18990; JACS, 2022, 21146; JACS, 2024, 12712; ACIE, 2025, e202416583, 与公司合作共同推了一些新型有机子材料的开(日本利第 7083441号;第7261372)

课题组的研究目是探索新型催化反活性,制功能分子,并开具有商化潜力的高性能子材料。目前主要研究方向包括:
1
)面向有机子材料的廉价金属催化合成: 利用等地球丰富金属催化,构建高效、可持的合成方法
2
)面向有机子材料的可光催化合成:
光能驱动分子化,实现温和、高选择性的有机合成策略
3
)新型有机子材料的分子设计: 发创新性的有机功能材料,并探索其在光伏、光、感器、柔性可穿戴器件等有机子器件中的用潜力
三个研究方向在尚课题组密相互关,形成一个同促的研究框架,在催化、分子设计与材料用等域共同推动创新。


三、代表论文

PI period

1. BINOLates as Strongly Reducing Photocatalysts for Inert Bond Activation and Reduction of Unsaturated Systems
Liu, C.; Zhang, Y.; Shang, R.*Chem,2025, 10, 102359.
2. Deep-red Emitting Copper(I) Indenediyltrisphosphine Complexes with Minimized Skeletal Vibrations and Configurational Disorder
Fukuma, S.; Fu, J.; Nakamuro, T.; Shang, R.*; Nakamura, E.* Angew. Chem. Int. Ed.2025, 63, e202416583.
3. Iron-catalysed C(sp2)–H activation for aza-annulation with alkynes on extended π-conjugated systems
Zhang, Y.; Fukuma, S.; Shang, R.*; Nakamura, E.* Nat. Synth.2024, 3, 1349–1359.
4. Doubly Spiro-conjugated Chiral Carbocycle Harnessing SOMO-HOMO Inversion for Persistent Radical Cation
Sakamaki, T.; Zhang, Y.; Fukuma, S.; Cruz, C. M.; Valdivia, A. C.; Campaña, A. G.; Casado, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2024, 146, 12712–12722.
5. o-Phosphinodiarylamides as Reductive Photocatalysts for Dehalogenative and Deaminative Cross Couplings
Shen, N.; Liu, C.; Zhang, X.; Shang, R.* ACS Catal.2023, 13, 11753–11761.
6. Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls using o-Phosphinophenolate
Liu, C.; Shen, N.; Shang, R.* Nat. Commun.2022, 13, 354. (cited 110 times)
7. Iron-catalyzed C–H Activation for Hetero-coupling and Co-polymerization of Thiophene with Enamine
Doba, T.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2022, 144, 21692–21701.
8. Precision Synthesis and Atomistic Analysis of Deep Blue Cubic Quantum Dots Made via Self-organization
Olivier, C.; Nakamuro, T.; Sato, W.; Miyashita, S.; Chiba, T.; Kido, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2022, 144, 21146–21156.
9. Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Hole-Transporting Material for Perovskite Solar Cells
Lin, H.-S.; Doba, T.; Sato, W.; Matsuo, Y.*; Shang, R.*; Nakamura, E.* Angew. Chem. Int. Ed.2022, 61, e202203949.
10. Thiophenolate as a Dual Functional Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls
Liu, C.; Li, K.; Shang, R.* ACS Catal.2022, 12, 4103–4109. (cited 100 times)
11. Iron-catalyzed Regioselective Thienyl C-H/C-H Coupling
Doba, T.; Ilies, L.; Sato, W.; Shang, R.*; Nakamura, E.* Nat. Catal.2021, 4, 631–638.
12. Photocatalytic Decarboxylative Alkylations of C(sp3)-H and C(sp2)-H Bonds Enabled by Ammonium Iodide in Amide Solvent
Wang, G.-Z.; Fu, M.-C.; Zhao, B.; Shang, R.* Sci. China Chem.2021, 64, 439–444. (cited 100 times)
13. Iron-Catalyzed Tandem Cyclization of Diarylacetylene to a Strained 1,4-Dihydropentalene Framework for Narrow-Band-Gap Materials
Chen, M.; Sato, W.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2021, 143, 6823–6828.
14. B/N-Doped p‐Arylenevinylene Chromophores: Synthesis, Properties, and Microcrystal Electron Crystallographic Study
Lu, H.; Nakamuro, T.; Yamashita, K.; Yanagisawa, H.; Nureki, O.; Kikkawa, M.; Gao, H.; Tian, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2020, 142, 18990–18996.
15. Transition-metal Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives
Cheng, W.-M.; Shang, R.* ACS Catal. 2020, 10, 9170–9196. (cited 330 times)
16. A cyclic phosphate-based battery electrolyte for high-voltage and safe operation
Zheng, Q.; Yamada, Y.; Shang, R.; Ko, S.; Lee, Y.; Kim, K.; Nakamura, E.*; Yamada, A.*, Nat. Energy, 2020, 5, 291–298. (cited 370 times)
17. Axially Chiral Spiro-conjugated Carbon-bridged p-Phenylenevinylene Congeners: Synthetic Design, and Materials Properties
Hamada, H.; Itabashi, Y.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2020, 142, 2059–2067.
18. Chromium(III)-catalyzed C(sp2)-H Alkynylation and Allylation of Secondary Amides with Trimethylaluminum as Base
Chen, M.; Doba, T.; Sato, T.; Ilies, L.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc.2020, 142, 4883–4891.
19. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide
Fu, M.-C.; Shang, R.*; Zhao, B.; Wang, B.; Fu, Y.* Science2019, 363, 1429–1434. (cited 680 times)
20. Homocoupling-free Iron-catalyzed Twofold C–H Activation/cross-couplings of Aromatics via Transient Connection of Reactants
Doba, T.; Matsubara, T.; Ilies, L.; Shang, R.*; Nakamura, E.* Nat. Catal.2019, 2, 400–406.
21. Disodium Benzodipyrrole Sulfonate as Neutral Hole Transporting Materials for Perovskite Solar Cells
Shang, R.*; Zhou, Z.-M.; Nishioka, H.; Halim, H.; Furukawa, S.; Takei, I.; Ninomiya, N.; Nakamura, E.* J. Am. Chem. Soc. 2018, 140, 5018–5022.
22. Irradiation-Induced Palladium-Catalyzed Decarboxylative Desaturation Enabled by a Dual Ligand System
Cheng, W.-M.; Shang, R.*; Fu, Y.* Nat. Commun.2018, 9, 5215. (cited 110 times)
23. Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature
Wang, G.-Z.; Shang, R.*; Cheng, W.-M.; Fu, Y.* J. Am. Chem. Soc.2017, 139, 18307–18312. (cited 310 times)
24. Photoredox/Bronsted Acid Co-Catalysis Enabling Decarboxylative Couplings of Amino Acid and Peptide Redox Active Esters with N-Heteroarenes
Cheng, W.-M.; Shang, R.*; Fu, Y.* ACS Catal. 2017, 7, 907–911. (cited 270 times)
25. Iron-Catalyzed C–H Bond Activation
Shang, R.; Ilies, L.*; Nakamura, E.* Chem. Rev. 2017, 117, 9086–9139. (cited 920 times)

Selected publications during Postdoc and Student Periods

1. Iron-catalyzed ortho C–H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand

Shang, R.; Ilies, L.*; Nakamura, E.* J. Am. Chem. Soc. 2016, 138, 10132–10135.

2. Boron-Catalyzed N-Alkylation of Amine with Carboxylic Acids

Fu, M.-C.; Shang, R.*; Cheng, W.-M.; Fu, Y.* Angew. Chem. Int. Ed. 2015, 54, 9042–9046.

3. Iron-catalyzed Directed C(sp2)–H and C(sp3)–H Functionalization with Trimethylaluminium

Shang, R.; Ilies, L.*; Nakamura, E.* J. Am. Chem. Soc. 2015, 137, 7660–7663.

4. Iron-catalyzed C (sp2)–H Bond Functionalization with Organoboron Compounds

Shang, R.; Ilies, L.*; Sobi, A.; Nakamura, E.* J. Am. Chem. Soc. 2014, 136, 14349–14352.

5. β-Arylation of carboxamides via iron-catalyzed C (sp3)–H bond activation

Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E.*; J. Am. Chem. Soc. 2013, 135, 6030–6032.

6. Transition metal-catalyzed decarboxylative cross-coupling reactions

Shang, R.; Liu, L.* Sci. China Chem. 2011, 54, 1670–1687.

7. Synthesis of α‐Aryl Nitriles through Palladium‐Catalyzed Decarboxylative Coupling of Cyanoacetate Salts with Aryl Halides and Triflates

Shang, R.; Ji, D. S.; Chu, L.; Fu, Y.; Liu, L.* Angew.Chem. Int. Ed. 2011, 50, 4470–4474.

8. Palladium-catalyzed decarboxylative couplings of 2-(2-azaaryl) acetates with aryl halides and triflates

Shang, R.; Yang, Z. W.; Wang, Y.; Zhang, S.-L.; Liu, L.*J. Am. Chem. Soc., 2010, 132, 14391–14393.

9. Copper‐Catalyzed Decarboxylative Cross‐Coupling of Potassium Polyfluorobenzoates with Aryl Iodides and Bromides

Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L.* Angew. Chem. Int. Ed. 2009, 48, 9350–9354.

10.  Synthesis of aromatic esters via Pd-catalyzed decarboxylative coupling of potassium oxalate monoesters with aryl bromides and chlorides

Shang, R.; Fu, Y.*; Li, J. B.; Zhang, S. L.; Guo, Q. X.; Liu, L.* J. Am. Chem. Soc. 2009, 131, 5738–5739.

四、联系方式

rshang@westlake.edu.cn