搜索网站、位置和人员

搜索网站、位置和人员
在西湖,我们的愿景与梦想引领我们走向未知,努力探索科学里的“世界尽头与大外海”。
一、个人简介
课题组负责人尚睿于2009年获得中国科学技术大学学士学位,并于2014年在同校获得博士学位。2012年至2014年间,他作为联合培养博士生在日本东京大学进行学习与研究。博士毕业后,他获得日本学术振兴会(JSPS)博士后奖学金,并在东京大学继续深造。2016年11月跳过助理教授晋升为東京大学理学部讲师,并于2020年在東京大学理学部晋升为副教授。2024年在東京大学理学部晋升为特任教授。将于2025年10月全职加入西湖大学,创立可持续催化与功能分子实验室。
尚睿教授的研究方向为新型催化反应,绿色有机合成,新型共轭分子及其材料功能。在廉价金属催化,可见光催化,以及有机功能材料领域做出了一系列有国际影响力的原创性成果。发表SCI论文80余篇,被引用9500余次。尚睿教授曾获得过中国青少年科技创新奖(2011),中国科学院院长特别奖(2013),中国科学院百篇优秀博士论文(2015),获得斯普林格博士论文奖 (2016)。他于 2022 年被选为Science of Synthesis (SoS) 的Early Career Advisory Board member,并于 2022 年被选为瑞士化学会Bürgenstock Conference的 JSP Fellow。他最近获得了Banyu Merck-Japan的Banyu Chemist Award 2022,日本化学会进步赏(2022),和Thieme Chemistry Journals Award 2023。目前尚睿教授还担任Organic Chemistry Frontier 的首届Early Career Advisory Board member,中国科学化学(Science China Chemistry)的青年编委,以及Luminescence (Wiley)的副主编。尚睿教授于2025年荣获美国化学会ACS Catalysis Lectureship Award 2025,是该奖项自2012年颁奖以来的首位华人获奖者。
二、学术成果
尚睿教授的研究兴趣涵盖较为广泛的催化反应领域,近年来在廉价金属催化和可见光催化方面开展了一系列具有国际影响力的原创研究,并成功开发了多种具有独特结构的共轭功能材料。其代表性成果为开拓了铁催化的金属有机反应活性,并设计出应用于功能电子材料合成的铁催化反应(Nat. Catal., 2019, 400; Nat. Catal., 2021, 631; Nat. Synth., 2024, 1349; JACS, 2022, 21692),通过独创性的反应合成了新型的聚合物和小分子有机半导体材料,成功应用于光电检测、光伏、和发光等电子器件 (JACS, 2021, 6823; ACIE, 2022, e2022039490。在可见光催化领域,国际首次提出并开辟了基于激发电子给体-受体络合物的光氧化还原催化的新概念(Science, 2019, 1429; Sci. China Chem., 2021, 439),并在可见光激发的过渡金属催化领域做出了早期的工作 (ACS Catal., 2020, 9170),提出了激发态钯催化的概念 (JACS, 2017, 18307; Nat. Commun., 2018, 5215)。近期他设计并发展了一系列廉价易得的阴离子型光催化剂(Chem, 2025, 102359; Nat. Commun., 2022, 354;ACS Catal., 2022, 4103),并应用于功能电子材料的光催化合成(ACS Catal., 2023, 11753)。他与日本三菱化学、高化学等企业以及一些国内企业建立过长期的产学研合作关系,开发了多种具有独特结构的共轭功能材料(JACS, 2018, 5018; JACS, 2020, 2059; JACS, 2020, 18990; JACS, 2022, 21146; JACS, 2024, 12712; ACIE, 2025, e202416583), 与公司合作共同推动了一些新型有机电子材料的开发与应用(日本专利第 7083441号;第7261372号)。
课题组的研究目标是探索新型催化反应活性,创制功能分子,并开发具有商业化潜力的高性能电子材料。目前主要研究方向包括:
1)面向有机电子材料的廉价金属催化合成: 利用铁等地球丰富金属催化剂,构建高效、可持续的合成方法
2)面向有机电子材料的可见光催化合成:
通过光能驱动分子转化,实现温和、高选择性的有机合成策略
3)新型有机电子材料的分子设计与应用: 开发创新性的有机功能材料,并探索其在光伏、发光、传感器、柔性可穿戴器件等有机电子器件中的应用潜力
这三个研究方向在尚课题组内紧密相互关联,形成一个协同促进的研究框架,在催化、分子设计与材料应用等领域共同推动创新。
三、代表论文
PI period
1. BINOLates as Strongly Reducing Photocatalysts for Inert Bond Activation and Reduction of Unsaturated Systems
Liu, C.; Zhang, Y.; Shang, R.* Chem, 2025, 10, 102359.
2. Deep-red Emitting Copper(I) Indenediyltrisphosphine Complexes with Minimized Skeletal Vibrations and Configurational Disorder
Fukuma, S.; Fu, J.; Nakamuro, T.; Shang, R.*; Nakamura, E.* Angew. Chem. Int. Ed. 2025, 63, e202416583.
3. Iron-catalysed C(sp2)–H activation for aza-annulation with alkynes on extended π-conjugated systems
Zhang, Y.; Fukuma, S.; Shang, R.*; Nakamura, E.* Nat. Synth. 2024, 3, 1349–1359.
4. Doubly Spiro-conjugated Chiral Carbocycle Harnessing SOMO-HOMO Inversion for Persistent Radical Cation
Sakamaki, T.; Zhang, Y.; Fukuma, S.; Cruz, C. M.; Valdivia, A. C.; Campaña, A. G.; Casado, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2024, 146, 12712–12722.
5. o-Phosphinodiarylamides as Reductive Photocatalysts for Dehalogenative and Deaminative Cross Couplings
Shen, N.; Liu, C.; Zhang, X.; Shang, R.* ACS Catal. 2023, 13, 11753–11761.
6. Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls using o-Phosphinophenolate
Liu, C.; Shen, N.; Shang, R.* Nat. Commun. 2022, 13, 354. (cited 110 times)
7. Iron-catalyzed C–H Activation for Hetero-coupling and Co-polymerization of Thiophene with Enamine
Doba, T.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2022, 144, 21692–21701.
8. Precision Synthesis and Atomistic Analysis of Deep Blue Cubic Quantum Dots Made via Self-organization
Olivier, C.; Nakamuro, T.; Sato, W.; Miyashita, S.; Chiba, T.; Kido, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2022, 144, 21146–21156.
9. Triarylamine/Bithiophene Copolymer with Enhanced Quinoidal Character as Hole-Transporting Material for Perovskite Solar Cells
Lin, H.-S.; Doba, T.; Sato, W.; Matsuo, Y.*; Shang, R.*; Nakamura, E.* Angew. Chem. Int. Ed. 2022, 61, e202203949.
10. Thiophenolate as a Dual Functional Catalyst for Photocatalytic Defluoroalkylation and Hydrodefluorination of Trifluoromethyls
Liu, C.; Li, K.; Shang, R.* ACS Catal. 2022, 12, 4103–4109. (cited 100 times)
11. Iron-catalyzed Regioselective Thienyl C-H/C-H Coupling
Doba, T.; Ilies, L.; Sato, W.; Shang, R.*; Nakamura, E.* Nat. Catal. 2021, 4, 631–638.
12. Photocatalytic Decarboxylative Alkylations of C(sp3)-H and C(sp2)-H Bonds Enabled by Ammonium Iodide in Amide Solvent
Wang, G.-Z.; Fu, M.-C.; Zhao, B.; Shang, R.* Sci. China Chem. 2021, 64, 439–444. (cited 100 times)
13. Iron-Catalyzed Tandem Cyclization of Diarylacetylene to a Strained 1,4-Dihydropentalene Framework for Narrow-Band-Gap Materials
Chen, M.; Sato, W.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2021, 143, 6823–6828.
14. B/N-Doped p‐Arylenevinylene Chromophores: Synthesis, Properties, and Microcrystal Electron Crystallographic Study
Lu, H.; Nakamuro, T.; Yamashita, K.; Yanagisawa, H.; Nureki, O.; Kikkawa, M.; Gao, H.; Tian, J.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2020, 142, 18990–18996.
15. Transition-metal Catalyzed Organic Reactions under Visible Light: Recent Developments and Future Perspectives
Cheng, W.-M.; Shang, R.* ACS Catal. 2020, 10, 9170–9196. (cited 330 times)
16. A cyclic phosphate-based battery electrolyte for high-voltage and safe operation
Zheng, Q.; Yamada, Y.; Shang, R.; Ko, S.; Lee, Y.; Kim, K.; Nakamura, E.*; Yamada, A.*, Nat. Energy, 2020, 5, 291–298. (cited 370 times)
17. Axially Chiral Spiro-conjugated Carbon-bridged p-Phenylenevinylene Congeners: Synthetic Design, and Materials Properties
Hamada, H.; Itabashi, Y.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2020, 142, 2059–2067.
18. Chromium(III)-catalyzed C(sp2)-H Alkynylation and Allylation of Secondary Amides with Trimethylaluminum as Base
Chen, M.; Doba, T.; Sato, T.; Ilies, L.; Shang, R.*; Nakamura, E.* J. Am. Chem. Soc. 2020, 142, 4883–4891.
19. Photocatalytic Decarboxylative Alkylations Mediated by Triphenylphosphine and Sodium Iodide
Fu, M.-C.; Shang, R.*; Zhao, B.; Wang, B.; Fu, Y.* Science 2019, 363, 1429–1434. (cited 680 times)
20. Homocoupling-free Iron-catalyzed Twofold C–H Activation/cross-couplings of Aromatics via Transient Connection of Reactants
Doba, T.; Matsubara, T.; Ilies, L.; Shang, R.*; Nakamura, E.* Nat. Catal. 2019, 2, 400–406.
21. Disodium Benzodipyrrole Sulfonate as Neutral Hole Transporting Materials for Perovskite Solar Cells
Shang, R.*; Zhou, Z.-M.; Nishioka, H.; Halim, H.; Furukawa, S.; Takei, I.; Ninomiya, N.; Nakamura, E.* J. Am. Chem. Soc. 2018, 140, 5018–5022.
22. Irradiation-Induced Palladium-Catalyzed Decarboxylative Desaturation Enabled by a Dual Ligand System
Cheng, W.-M.; Shang, R.*; Fu, Y.* Nat. Commun. 2018, 9, 5215. (cited 110 times)
23. Irradiation-Induced Heck Reaction of Unactivated Alkyl Halides at Room Temperature
Wang, G.-Z.; Shang, R.*; Cheng, W.-M.; Fu, Y.* J. Am. Chem. Soc. 2017, 139, 18307–18312. (cited 310 times)
24. Photoredox/Bronsted Acid Co-Catalysis Enabling Decarboxylative Couplings of Amino Acid and Peptide Redox Active Esters with N-Heteroarenes
Cheng, W.-M.; Shang, R.*; Fu, Y.* ACS Catal. 2017, 7, 907–911. (cited 270 times)
25. Iron-Catalyzed C–H Bond Activation
Shang, R.; Ilies, L.*; Nakamura, E.* Chem. Rev. 2017, 117, 9086–9139. (cited 920 times)
Selected publications during Postdoc and Student Periods
1. Iron-catalyzed ortho C–H Methylation of Aromatics Bearing a Simple Carbonyl Group with Methylaluminum and Tridentate Phosphine Ligand
Shang, R.; Ilies, L.*; Nakamura, E.* J. Am. Chem. Soc. 2016, 138, 10132–10135.
2. Boron-Catalyzed N-Alkylation of Amine with Carboxylic Acids
Fu, M.-C.; Shang, R.*; Cheng, W.-M.; Fu, Y.* Angew. Chem. Int. Ed. 2015, 54, 9042–9046.
3. Iron-catalyzed Directed C(sp2)–H and C(sp3)–H Functionalization with Trimethylaluminium
Shang, R.; Ilies, L.*; Nakamura, E.* J. Am. Chem. Soc. 2015, 137, 7660–7663.
4. Iron-catalyzed C (sp2)–H Bond Functionalization with Organoboron Compounds
Shang, R.; Ilies, L.*; Sobi, A.; Nakamura, E.* J. Am. Chem. Soc. 2014, 136, 14349–14352.
5. β-Arylation of carboxamides via iron-catalyzed C (sp3)–H bond activation
Shang, R.; Ilies, L.; Matsumoto, A.; Nakamura, E.*; J. Am. Chem. Soc. 2013, 135, 6030–6032.
6. Transition metal-catalyzed decarboxylative cross-coupling reactions
Shang, R.; Liu, L.* Sci. China Chem. 2011, 54, 1670–1687.
Shang, R.; Ji, D. S.; Chu, L.; Fu, Y.; Liu, L.* Angew.Chem. Int. Ed. 2011, 50, 4470–4474.
Shang, R.; Yang, Z. W.; Wang, Y.; Zhang, S.-L.; Liu, L.*J. Am. Chem. Soc., 2010, 132, 14391–14393.
Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L.* Angew. Chem. Int. Ed. 2009, 48, 9350–9354.
Shang, R.; Fu, Y.*; Li, J. B.; Zhang, S. L.; Guo, Q. X.; Liu, L.* J. Am. Chem. Soc. 2009, 131, 5738–5739.
四、联系方式
rshang@westlake.edu.cn